TRIDONIC

Driver LC 20W 350/500/700mA flexC SR ADV

Baureihe advanced

Produktbeschreibung

- Unabhängiger Fixed-Output-LED-Treiber
- Für Leuchten der Schutzklasse I und der Schutzklasse II
- Für Leuchten mit M und MM gemäß EN 60598, VDE 0710 und VDF 0711
- Temperaturschutz gemäß EN 61347-2-13 C5e
- Ausgangsstrom auswählbar zwischen 350, 500 und 700 mA
- Max. Ausgangsleistung 20 W
- Bis zu 85 % Effizienz
- Nominale Lebensdauer bis zu 50.000 h
- 5 Jahre Garantie (Bedingungen siehe www.tridonic.com)

Gehäuse-Eigenschaften

- Gehäuse: Polycarbonat, weifz
- Schutzart IP20

Schnittstellen

• Klemmen: 0° Schraubklemmen

Funktion

- Überlastschutz
- Kurzschlussschutz
- Leerlaufschutz
- Übertemperaturschutz
- Schutz gegen Burst-Spannungen 1 kV
- Schutz gegen Surge-Spannungen 1 kV (zwischen L und N)
- Schutz gegen Surge-Spannungen 2 kV (zwischen L/N und Erde)

Typische Anwendung

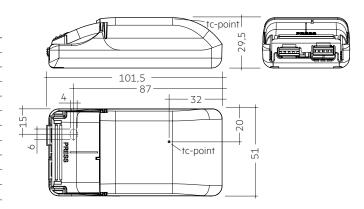
- Für Spotlight und Downlight bei Handels- und Gastronomie-Anwendungen
- Für Panel- und Flächenbeleuchtung bei Büro- und Bildungs-Anwendungen

Normen, Seite 3

Anschlussdiagramme und Installationsbeispiele, Seite ${\bf 3}$

LED-TreiberKompakt Fixed-Output

TRIDONIC


$\begin{array}{c|c} \mathsf{IP20} \ \mathbf{SELV} \ \square \ \textcircled{\tiny{?}} \ \ \textcircled{\tiny{?}} \ \ \textcircled{\tiny{?}} \$

Driver LC 20W 350/500/700mA flexC SR ADV

Baureihe advanced

Technische Daten

220 – 240 V
198 – 264 V
0,12 A
50 / 60 Hz
320 V AC, 1 h
26 W
24 W
8,7 W
20 W
85 %
0,95
± 10 %
≤ Ausgangsstrom + 20 %
60 V
< 20 %
± 5 %
≤ 1,2 s
≤ 0,2 s
0 s
40 °C
-40 +80 °C
bis zu 50.000 h
5 Jahre
101,5 x 51 x 29,5 mm

Bestelldaten

Тур	Artikel-	Verpackung	Verpackung	Gewicht	
тур	nummer	Karton	Palette	pro Stk.	
LC 20W 350/500/700mA flexC SR ADV	28002496	20 Stk.	1.120 Stk.	0,094 kg	

Spezifische technische Daten

-										
Тур	Ausgangs-	Min.	Max.	Max.	Typ. Leistungsauf-	Typ. Stromauf-	Wirkungsgrad	Wirkungsgrad	Max. Gehäuse-	Umgebungs-
	strom@	Vorwärts-	Vorwärts-	Ausgangs-	nahme (bei 230 V,	nahme (bei 230 V,	(bei 230 V,	(bei 230 V,	temperatur tc	temperatur ta
		spannung	spannung	leistung	50 Hz, Volllast)	50 Hz, Volllast)	50 Hz, Volllast)	50 Hz, min. Last)		
	350 mA	25 V	50,0 V	17,5 W	21 W	100 mA	85,0 %	78 %	80 °C	-20 +50 °C
LC 20W 350/500/700mA flexC SR ADV	500 mA	20 V	40,0 V	20,0 W	24 W	110 mA	83,5 %	78 %	85 °C	-20 +50 °C
	700 mA	14 V	28.5 V	20.0 W	24 W	110 mA	82.0 %	75 %	85 °C	-20 +50 °C

^① Testwert bei 700 mA.

² Ausgangsstrom ist Mittelwert.

 $^{^{\}scriptsize{\textcircled{3}}}$ Testwert bei 25 °C.

1. Normen

EN 55015

EN 60598-1

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 61547

EN 62384

1.1 Glühdrahttest

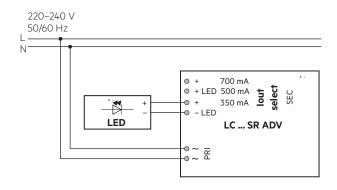
nach EN 61347-1 mit erhöhter Temperatur von 850 °C bestanden.

2. Thermische Angaben und Lebensdauer

2.1 Erwartete Lebensdauer

Erwartete Lebensdauer								
Тур	Strom	ta	40 °C	50°C				
	350 mA	tc	70 °C	80°C				
	550 IIIA	Lebensdauer	50.000 h	30.000 h				
LC 20W 350/500/700mA flexC SR	500 mA	tc	75°C	85°C				
ADV	Lebensdauer		50.000 h	30.000 h				
	700 mA	tc	75°C	85°C				
	700 IIIA	Lebensdauer	50.000 h	30.000 h				

Der LED-Treiber ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.


Die Abhängigkeit des Punktes tc von der Temperatur ta hängt auch vom Design der Leuchte ab.

Liegt die gemessene Temperatur to etwa 5 K unter to max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden.

Detaillierte Informationen auf Anfrage.

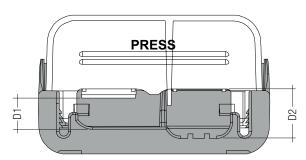
3. Installation / Verdrahtung

3.1 Anschlussdiagramm

3.2 Leitungsart und Leitungsquerschnitt

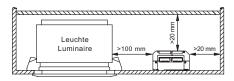
Zur Verdrahtung können Litzendraht oder Volldraht verwendet werden. Für perfekte Funktion der Käfigzugbügelklemmen müssen die Eingangsleitungen 4 – 5 mm abisoliert werden.

Das max. Drehmoment an der Klemmschraube (M3) liegt bei 0,2 Nm.


Eingangsklemme (D2)

Ausgangsklemme (D1)

Um eine gut funktionierende Zugentlastung zu erreichen, schlagen wir vor den Durchmesser des Kabelmantels der Seite D2 2 mm größer zu wählen als den Manteldurchmesser der Seite D1. (Dieser Wert kann variieren wenn das verwendete Kabelmantelmaterial von Seite D2 zu D1 ein unterschiedliches Quetschverhalten aufweist).



Folgende Tabelle zeigt die Verwendung der Laschen der Zugentlastung in Bezug auf die Kabelmanteldurchmesserdifferenz zwischen Seite D2 und D1:

	Seite D1 Seite D2							
Gehäu	ıseboden	,	Klemmenabdeckung					
Mit Lasche	Ohne Lasche	Mit Lasche	Ohne Lasche	ne Lasche Mit Lasche Ohne Lasche	Ohne Lasche	D2 - D1		
X	-	X	-	X	-	3,5 mm		
X	-	X	-	-	Х	5,5 mm		
X	-	_	×	-	Х	3,5 mm		
-	×	X	-	-	×	3,5 mm		
-	×	_	×	-	Х	1,5 mm		
X	-	_	×	Х	-	1,5 mm		
-	×	X	-	Х	-	1,5 mm		
-	×	-	×	Х	-	-0,5 mm		

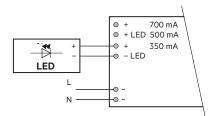
3.3 Montageumgebung

Trocken; Säurefrei; Ölfrei; Fettfrei. Die am Gerät angegebene maximale Umgebungstemperatur (ta) darf nicht überschritten werden. Die unten angegebenen Mindestabstände sind Empfehlungen und von der eingesetzten Leuchte abhängig. Versorgungseinheit nicht für Montage direkt in der Ecke geeignet.

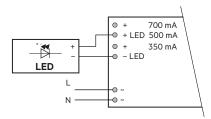
Das LED-Modul und alle Kontaktstellen innerhalb der Verdrahtung ausreichend gegen 3 kV Überspannung isolieren.

3.4 Verdrahtungsrichtlinien

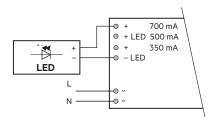
- Alle Verbindungen möglichst kurz halten, um gutes EMV-Verhalten zu erreichen.
- Netzleitungen getrennt vom LED-Treiber und anderen Leitungen führen (ideal 5 10 cm Abstand)
- Max. Länge der Ausgangsleitungen beträgt 2 m.
- Zur Einhaltung der EMV Vorschriften sekundäre Leitungen (LED Modul) parallel führen.
- Falsche Verdrahtung kann LED-Module zerstören.
- Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.
- Die Stromeinstellung muss gemäß der Anforderung der Niederspannungsanlagen eingebaut werden.


3.5 Austausch LED-Modul

- 1. Netz aus
- 2. LED-Modul entfernen
- 3. 20 Sekunden warten
- 4. LED-Modul wieder anschließen

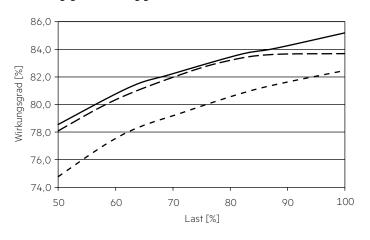

Hot-Plug-In oder Schalten der LEDs am Ausgang ist nicht erlaubt und kann zu sehr hohem Strom in den LEDs führen.

3.6 Stromauswahl

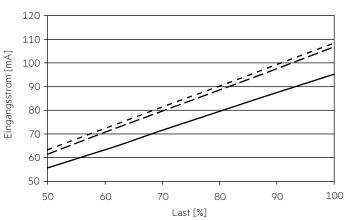

Für 350 mA diese Klemmen verwenden:

Für 500 mA diese Klemmen verwenden:

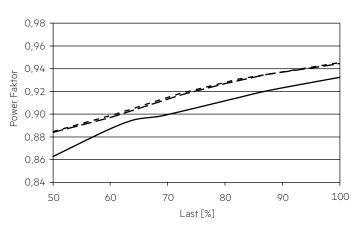
Für 700 mA diese Klemmen verwenden:

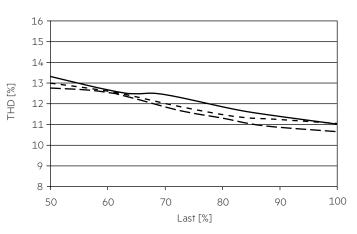

3.7 Gerätebefestigung

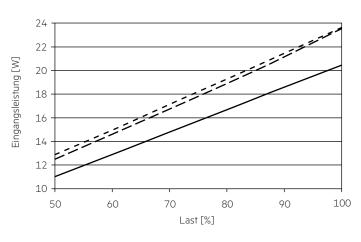
Max. Drehmoment für die Befestigung: 0,5 Nm/M4


4. Elektr. Eigenschaften

Testwerte bei 230 V 50 Hz.


4.1 Wirkungsgrad in Abhängigkeit von der Last


4.4 Eingangsstrom in Abhängigkeit von der Last


4.2 Power Faktor in Abhängigkeit von der Last

4.5 THD in Abhängigkeit von der Last

4.3 Eingangsleistung in Abhängigkeit von der Last

350 mA ---- 500 mA ---- 700 mA

4.6 Maximale Belastung von Leitungsschutzautomaten bezogen auf den Einschaltstrom

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einschaltstrom	
Installation Ø	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	1,5 mm ²	1,5 mm ²	1,5 mm ²	2,5 mm ²	Imax	Pulsdauer
LC 20W 350/500/700mA flexC SR ADV	65	84	104	130	65	84	104	130	10 A	80 µs

Dies sind max. Werte, die aus dem Einschaltstrom berechnet werden! Achten sie darauf, den max. Nenndauerstrom des Leitungsschutzautomaten nicht zu überschreiten. Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

4.7 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

	THD	3.	5.	7.	9.	11.
LC 20W 350/500/700mA flexC SR ADV	< 20	< 11	< 5	< 5	< 4	< 3

5. Funktionen

5.1 Verhalten bei Kurzschluss

Bei Kurzschluß am LED-Ausgang schützt sich der LED-Treiber selbst. Nach Behebung des Kurzschlußes erfolgt automatische Rückkehr in den nominalen Betrieb.

5.2 Verhalten bei Leerlauf

Im Leerlaufbetrieb wird die vorgegebene max. Ausgangsspannung nicht überschritten.

5.3 Überlastschutz

Wird die maximale Last um einen definierten internen Grenzwert überschritten, schützt sich der LED-Treiber selbst und die LED's flackern. Nach Behebung der Überlast erfolgt automatische Rückkehr in den nominalen Betrieb.

5.3 Übertemperaturschutz

Das LED-Betriebsgerät ist vor kurzzeitiger thermischer Überlastung geschützt. Wenn die Temperaturgrenze überschritten wird, dann wird der Ausgangsstrom verringert, um tc auf einem bestimmten Niveau zu begrenzen.

6. Sonstiges

6.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V $_{DC}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Neutralleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{\text{AC}}$ (oder 1,414 x 1500 V $_{\text{DC}}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

6.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5 % bis max. 85 %,

nicht kondensierend (max. 56 Tage/Jahr bei 85 %)

tur: -40°C bis max. +80°C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

6.3 Maximale Anzahl an Schaltzyklen

Alle LED-Treiber werden mit 50.000 Schaltzyklen geprüft.

6.4 Zusätzliche Informationen

Lagertemperatur:

weitere technische Informationen auf $\underline{www.tridonic.com} \rightarrow \mathsf{Technische}$ Daten

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch dar. $% \label{eq:controller}$

Keine Garantie wenn das Gerät geöffnet wurde!